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Abstract
In the usual formulation of quantum mechanics, groups of automorphisms of
quantum states have ray representations by unitary and antiunitary operators
on complex Hilbert space, in accordance with Wigner’s theorem. In the
phase-space formulation, they have real, true unitary representations in the
space of square-integrable functions on phase space. Each such phase-space
representation is a Weyl–Wigner product of the corresponding Hilbert
space representation with its contragredient, and these can be recovered by
‘factorizing’ the Weyl–Wigner product. However, not every real, unitary
representation on phase space corresponds to a group of automorphisms, so
not every such representation is in the form of a Weyl–Wigner product and
can be factorized. The conditions under which this is possible are examined.
Examples are presented.

PACS numbers: 03.65.Ca, 02.20.Qs, 03.65.Ta

1. Introduction

Since the pioneering works of Weyl [1], von Neumann [2], Wigner [3], Groenewold [4]
and Moyal [5], the phase-space formulation of quantum mechanics has been the subject of
much research from many different points of view. The underlying theory has been greatly
developed [6–27], including group-theoretical aspects of particular relevance to the present
work [28–45].

Our interest here is in the way that symmetries, and more generally, groups of
automorphisms of quantum states, are expressed by group representations in the formulation
of quantum mechanics on phase space �, and the relationship of these to more familiar
representations on complex Hilbert space H. Representations of automorphism groups on �

are typically true, real, unitary representations, whereas representations onH can be projective,
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and even antiunitary (such as in the case of time-reversal symmetry), in accordance with
Wigner’s theorem [46–48]. Such a phase-space representation �� is isomorphic (but not
equal) [37] to the tensor product of a corresponding Hilbert space representation �H with its
contragredient �C

H. We call it the Weyl–Wigner product of �H and �C
H, and write

�� = �H
W⊗ �C

H
∼= �H ⊗ �C

H. (1)

Recent successes of ‘quantum tomography’ [49] have highlighted the fact that the quantum
state vector (wavefunction) in H can be recovered from the Wigner distribution function on
�, up to a constant phase [16]. In principle, the whole Hilbert space structure of quantum
mechanics can be recovered from the phase-space structure [25], so we must expect that a
projective, complex, unitary or antiunitary representation �H in Hilbert space can be recovered
from the corresponding true, real, unitary representation �� in phase space, in effect by
‘factorizing’ �� as a Weyl–Wigner product (1). We shall confirm that this is the case. It is
remarkable that this is possible, in particular because ray representations are associated with
central extensions at the Lie algebra level, and it can only happen if the associated extension
parameters (mass of a particle, Planck’s constant, etc) already appear in the true, phase-space
representation, or else arise in the mapping from phase space back to Hilbert space. We shall
see that both possibilities are realized.

The structure of the phase-space formulation in its original form is intimately connected
with the structure of the Heisenberg–Weyl group. Extensions to other groups have been
described [7, 36, 43], but we shall deal here only with the original form, restricting � to
the phase plane coordinatized by the pair (q, p). However, we shall be concerned with
representations on � and H of groups and Lie algebras other than the Heisenberg–Weyl group
and algebra. Generalizations to quantum systems with several degrees of freedom, and systems
with spin, are certainly possible.

At the heart of the phase-space formulation of quantum mechanics lies the Weyl–Wigner
transformW , which is an invertible mapping from linear operators Â, B̂, . . . on H to functions
A,B, . . . on �.

Before embarking on a discussion of automorphism groups and their representations, it is
necessary to outline a firm mathematical basis for the Weyl–Wigner transform and its inverse.
More detail can be found in the literature [12, 25, 27]. We work with dimensionless variables
in what follows, in effect setting Planck’s constant h̄ equal to 1, except in the first two examples
at the end of the paper.

2. Background: a mathematical setting for the Weyl–Wigner transform

For our purposes, an appropriate setting for a description of W and W−1 for a system with
one degree of freedom involves [31, 12, 25]

• the complex vector space of Hilbert–Schmidt operators on H, regarded as a Hilbert space
TC with scalar product

(Â, B̂)TC
= Tr(Â

†
B̂) (2)

• the complex vector space L2(C, d�), regarded as a Hilbert space KC with scalar product

(A,B)KC
= 1

2π

∫
AB d� d� = dq dp (3)

together with certain associated vector spaces. (We use Tr to denote the trace, and the overbar
to denote complex conjugation. Integrals are over all real values of the variables of integration,
unless otherwise indicated.)
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The Hilbert space H of state vectors can be realized as L2(C, dx) (the ‘coordinate
representation’) with scalar product

(ϕ,ψ)H =
∫

ϕ(x)ψ(x) dx. (4)

Let e1, e2, . . . form an orthonormal basis of ‘test’ functions in this realization of H. Each
er and its Fourier transform is infinitely differentiable and each, together with all its derivatives,
vanishes more quickly than any negative power of its argument, as that argument approaches
±∞; the eigenfunctions of the Hamiltonian operator of a simple harmonic oscillator provide
an example. Introduce the ‘Gel’fand triple’ of vector spaces

G < H < G′ (5)

where G is the Schwartz space associated with the basis {er}, and G′ is its strong dual
[51–54, 25].

Now let êrs , for r, s = 1, 2, . . . denote the rank-1 operator on H corresponding to the
above choice of basis, defined by

êrsϕ = (es, ϕ)Her ∀ϕ ∈ H. (6)

Then the set of êrs forms an orthonormal basis in TC , with

(êrs, êuv)TC
= δruδsv. (7)

Introduce the Gel’fand triple

SC < TC < S ′
C (8)

by analogy with (5).
Corresponding to each êrs ∈ TC , define �rs ∈ KC by

�rs(q, p) =
∫

er(q − y/2)es(q + y/2) eipy dy. (9)

It is easily checked that the set of �rs forms an orthonormal basis in KC , and that each �rs is
a ‘test function’ of two variables. Introduce the Gel’fand triple

JC < KC < J ′
C (10)

by analogy with (5) and (8).
The elements of G′ are ‘generalized functions’ on the real line. Similarly, J ′

C consists
of generalized functions on the phase plane. The elements of S ′

C are ‘generalized linear
operators’, and include the operators in SC and TC . It is not difficult to see that a generalized
linear operator can be regarded as carrying elements of G into elements of G′ in general, that
is to say, test functions of one variable into generalized functions of one variable [25].

The Weyl–Wigner transform is a 1-1 invertible mapping from S ′
C onto J ′

C which
associates a generalized function A with each generalized operator Â. Note first that each
Â ∈ SC can be interpreted as an integral operator

(Âϕ)(x) =
∫

AK(x, y)ϕ(y) dy ϕ ∈ H (11)

whose kernel AK is a test function of two variables. Then define

A(q, p) = (W(Â))(q, p) =
∫

AK(q − y/2, q + y/2) eipy dy (12)

with inverse

AK(x, y) = (W−1(A))K(x, y) = 1

2π

∫
A((x + y)/2, p) eip(x−y) dp. (13)
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These formulae (12) and (13) can be extended to apply to every operator in TC (regarded
as an integral operator) and every function in KC if the integrals are interpreted in the usual
generalized way for Fourier transforms of L2 functions.

Once W and W−1 have been defined in this way on SC and JC , respectively, their
definitions can be extended easily to S ′

C and J ′
C , respectively, as follows. For each τ ∈ S ′

C ,
define W(τ ) ∈ J ′

C by

W(τ )(κ) = τ (W−1(κ)) ∀κ ∈ JC (14)

and conversely, for each κ ∈ J ′
C , define W−1(κ) ∈ S ′

C by

W−1(κ)(τ ) = κ(W(τ )) ∀τ ∈ SC. (15)

This defines W and W−1 as mappings from S ′
C onto J ′

C and vice versa. The mappings are
continuous in the natural topologies on these spaces [25].

In particular, W and W−1 map TC onto KC and vice versa. In this case, as can be seen
from (12) and (13), we have for every Â, B̂ ∈ TC and corresponding A,B ∈ KC ,

(A,B)KC
= (Â, B̂)TC

(16)

showing that W and W−1 act as unitary transformations from TC onto KC and vice versa.
We note that S ′

C contains two important classes of operators with the property that every
operator in each class has every ψ ∈ G in its domain:

• The class of Hilbert–Schmidt operators, forming TC , which are bounded and defined on
all of H.

• The class Q of operators which leave G invariant, and so have G as a common, invariant
domain, dense in H. This class contains in particular the unit operator Î on H and the
canonical operators q̂, p̂ defined on ψ ∈ G by

q̂ψ(x) = xψ(x) p̂ψ(x) = −iψ ′(x) (17)

and it therefore also contains all polynomials in these operators, forming a subclass
QWH ⊂ Q. We can say that QWH defines a representation on G of the enveloping algebra
of the Heisenberg–Weyl Lie algebra.

The classes TC,Q and QWH share another important property: each is invariant under
the formation of operator products. Note that TC and Q are not disjoint, and that neither is a
subclass of the other.

For Â, B̂ ∈ TC , we define the associative but noncommutative star product [4, 5] of the
corresponding A,B ∈ KC by

A 
 B(=W(Â) 
 W(B̂)) = W(ÂB̂). (18)

The Wigner transform defines not only a unitary transformation from TC to KC , but also an
isomorphism of these two sets, regarded as algebras. The usual operator product in TC is
replaced by the star product of functions in KC . The image of (−i×) the commutator on TC

is the Groenewold–Moyal [4, 5] bracket on KC :

{A,B}GM = −i(A 
 B − B 
 A). (19)

For sufficiently smooth A and B, in particular for A,B ∈ JC , it can be seen from (12) and
(13) that

(A 
 B)(q1, p1) = 1

π2

∫
A(q2, p2)B(q3, p3) e−2i[p1(q2−q3)+p2(q3−q1)+p3(q1−q2)] dq2 dp2 dq3 dp3

(20)
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and so

{A,B}GM(q1, p1) = − 2

π2

∫
A(q2, p2)B(q3, p3) sin(2[p1(q2 − q3)

+ p2(q3 − q1) + p3(q1 − q2)]) dq2 dp2 dq3 dp3. (21)

For such A and B, the order of the integrations is unimportant. For general A,B ∈ KC , (20)
and (21) are valid with a generalized interpretation of the integrals.

The image under W of the space QWH is the subspace IWH of J ′
C , consisting of

polynomials in 1, q and p. In particular, W(Î ) = 1,W(q̂) = q and W(p̂) = p. For
Â, B̂ ∈ QWH , we again use (18) and (19) to define the star product and Groenewold–Moyal
bracket of the corresponding A,B ∈ IWH . The transforms W and W−1 map QWH onto IWH

and vice versa, preserving polynomial degree. This action establishes an equivalence of two
representations of the enveloping algebra of the Heisenberg–Weyl Lie algebra, one in QWH

with the usual operator product, the other in IWH with the star product. The structure of the
mappings W and W−1 in this case is well known [1, 10, 11, 16]. We have

W(q̂np̂m) =
min(m,n)∑

k=0

( i

2

)k

k!Cm
k Cn

k qm−kpn−k (22)

where Cm
r = m!/(r!(m − r)!). Conversely,

W−1(qmpn) =
min(m,n)∑

k=0

(−i

2

)k

k!Cm
k Cn

k q̂m−k p̂n−k

= 1

2m

m∑
r=0

Cm
r q̂m−r p̂nq̂r . (23)

Further similar formulae can be obtained by replacing q̂ by p̂, p̂ by −q̂, q by p and p by −q .
On IWH , the star product reduces to

(A 
 B)(q, p) = A(q, p)B(q, p) + i(AJB)(q, p) − 1

2!
(AJ 2B)(q, p) + · · ·

= B(q, p)A(q, p) − i(BJA)(q, p) − 1

2!
(BJ 2A)(q, p) + · · · (24)

where

J = 1

2

(
∂(L)

∂q

∂(R)

∂p
− ∂(R)

∂q

∂(L)

∂p

)
(25)

with L and R indicating the directions in which the differential operators act. Then the
Groenewold–Moyal bracket (19) takes the form

({A,B}GM)(q, p) = 2((AJB)(q, p) − 1

3!
(AJ 3B)(q, p) +

1

5!
(AJ 5B)(q, p) + · · ·). (26)

The formulae (24) and (26) are commonly written as

A 
 B = AeiJ B = Be−iJ A {A,B}GM = 2A sin(J )B. (27)

Note however that because A and B in QWH are polynomials, the series in (24) and (26)
terminate.

More generally, we can use (18) and (19) to define the star product and Groenewold–Moyal
bracket of those A,B ∈ J ′

C corresponding to Â, B̂ ∈ Q. Note that, for all Â ∈ S ′
C ,

W(Â) = A ⇔ W(Â
†
) = A (28)
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and that whenever the star product of A and B is defined, it satisfies

A 
 B = B 
 A (29)

reflecting the fact that

(ÂB̂)† = B̂
†
Â

†
. (30)

3. Quantum states

Let TR denote the Hilbert space of self-adjoint Hilbert–Schmidt operators over the real
numbers, with scalar product

(Â, B̂)TR
= Tr(ÂB̂). (31)

Its image under W is KR , the Hilbert space of square-integrable, real-valued functions on �

with scalar product

(A,B)KR
= 1

2π

∫
AB d�. (32)

The elements of TR and KR represent a class of observables on a quantum system, in the
Hilbert space and phase-space formulations, respectively. By an obvious extension of the
arguments for TC and KC , the mappings W and W−1 act as unitary transformations between
TR and KR: if A = W(Â) and B = W(B̂), we have

(Â, B̂)TR
= (A,B)KR

. (33)

Let P ⊂ TR denote the set of pure state density operators ρ̂ ∈ TR for the quantum system,
which are characterized by the conditions

ρ̂2 = ρ̂ (ρ̂, ρ̂)TR
= 1. (34)

The set of pure and mixed state density operators is the convex set of ρ̂ ∈ TR with the pure
state density operators as extremal points. Corresponding to each ρ̂, pure or mixed, the Wigner
distribution function is defined as

W = 1

2π
W(ρ̂). (35)

It follows at once from (31)–(33) that

Tr(ρ̂Â) =
∫

W(q, p)A(q, p) d� (36)

for each Â ∈ TR and corresponding A ∈ KR , which equates the familiar expressions for
quantum averages in the Hilbert space and phase-space forms.

Let V = W(P) ⊂ KR denote the set of pure state Wigner functions. For any W ∈ V we
have, from (35) and (34),

W 
 W = 1

2π
W 2π

∫
W 2 d� =

∫
W d� = 1. (37)

Pure state density operators, and hence pure state Wigner functions, are in one-to-one
correspondence with unit rays in the Hilbert space of state vectors.

Given a unit ray, the corresponding pure state density operator is the one-dimensional
projection whose action on any χ ∈ H is given by

ρ̂χ = (ψ, χ)Hψ (38)
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where ψ is any vector in the ray. In the coordinate representation adopted in section 2, ρ̂ is
the integral operator with kernel ψ(x)ψ(y), and the corresponding Wigner function takes the
form, from (12),

W(q, p) = 1

2π

∫
ψ(q − y/2)ψ(q + y/2) eipy dy. (39)

The inverse problem, of finding the unit ray corresponding to a given pure state Wigner
function W satisfying (37), which is equivalent to the problem of finding the unit ray
corresponding to a given pure state density operator ρ̂ satisfying (34), has been treated by
Tatarskii [16]. However, it is difficult to define a linear mapping from Wigner functions to
corresponding wavefunctions. This is an obstacle to recovering a (linear) unitary mapping
between wavefunctions in H, corresponding to a given mapping between Wigner functions,
associated with a transformation from some symmetry group, say. On the other hand, it is
known that the Hilbert space structure is represented within the phase-space structure [25].
We shall see that it is possible in principle to recover such unitary symmetry operators on H,
as well as antiunitary symmetry operators, using a different approach.

4. Automorphisms and Wigner’s theorem

Let Aut(P) denote the set of automorphisms of P. It consists of all bijective maps µ : P → P
that also satisfy the condition

(µ(ρ̂1), µ(ρ̂2))TR
= (ρ̂1, ρ̂2)TR

(40)

for all ρ̂1, ρ̂2 ∈ P, and is a group under the natural composition of mappings. We refer to the
mappings in Aut(P) as P-automorphisms.

Let Aut(V) denote the set of automorphisms of V. It consists of all bijective maps
M : V → V that also satisfy the condition

(M(W1),M(W2))KR
= (W1,W2)KR

(41)

for all W1,W2 ∈ V, and similarly forms a group. We refer to the mappings in Aut(V) as
V-automorphisms.

The Weyl–Wigner transform defines a unitary transformation from TR to KR which maps
P onto V, and establishes an isomorphism of Aut(P) and Aut(V). Explicitly,

M(W) = M(W(ρ̂)) = W(µ(ρ̂)) µ(ρ̂) = µ(W−1(W)) = W−1(M(W)). (42)

According to Wigner’s theorem [46–48], given any µ ∈ Aut(P), there exists a unitary or
antiunitary operator Û on H, unique up to a phase factor, such that

µ(ρ̂) = Û ρ̂Û † ∀ρ̂ ∈ P. (43)

Each µ ∈ Aut(P) extends to an operator on TC , with

µ(Â) = Û ÂÛ
† ∀Â ∈ TC. (44)

This operator does not act linearly on TC in general, but it does always act linearly on TR ,
which it leaves invariant. It defines a real unitary transformation of TR onto itself. We denote
this transformation also by µ. We extend the whole group of automorphisms Aut(P) in this
way to act on all of TR , and denote this group with extended domain of action also by Aut(P).
Similarly, we extend each automorphism M ∈ Aut(V), and hence Aut(V) itself, to act unitarily
on all of KR .

Aut(P) is isomorphic to �(H), the group of unitary and antiunitary operators on H,
factored by its closed centre, the phase group [48]:

�(H) = U ∪ U/T (45)

and it follows that this is also true of Aut(V).
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In the case that Û is unitary, the action of M on A ∈ KR corresponding to (44) is given by

M(A) = W(ÛÂÛ †) = W(Û) 
 A 
 W(Û †) = U 
 A 
 U. (46)

Here U = W(Û) is a complex-valued function on �, and U is its complex conjugate.
Corresponding to unitarity of Û we have

U 
 U = U 
 U = 1. (47)

Note that a unitary operator Û lies in S ′
C , not in TC , but

Â ∈ TR ⇒ Û ÂÛ
† ∈ TR. (48)

Similarly, a star-unitary function U lies in J ′
C , not KC , but

A ∈ KR ⇒ U 
 A 
 U ∈ KR. (49)

In the case that Û is antiunitary, because the action of W on antiunitary operators has not been
defined, we proceed as follows. Consider the particular antiunitary operator Ĉ on H which
leaves all basis vectors er invariant: if ϕ = ∑

r ϕrer , then

Ĉϕ =
∑

r

ϕrer . (50)

(If we work in the coordinate representation, and choose a basis in H of real-valued functions,
then Ĉ is the operation of complex conjugation.)

Next, let P denote the operator on KC defined by

(P(A))(q, p) = A(q,−p) for all A ∈ KC. (51)

Then P is unitary on KC , and also (real) unitary when restricted to KR . It is evident that, on
KC or KR ,

P† = P P2 = I. (52)

Direct calculation from (20) shows also that

P(A 
 B) = P(B) 
 P(A) for all A,B ∈ KC. (53)

The form of the Wigner function W ′ corresponding to ρ̂ ′ = Ĉρ̂Ĉ is now given from (39)
by

W ′(q, p) = W(q,−p) = (P(W))(q, p) (54)

and generalizing (54), we find for a general Â ∈ TC and corresponding A ∈ KC , that

W(ĈÂĈ) = P(A). (55)

The transformation of W corresponding to a general antiunitary operator Û = ĈV̂ in (43),
where V̂ is unitary, is

W ′ = P(V 
 W 
 V ) = P(V ) 
 P(W) 
 P(V ) or
(56)

W ′(q, p) = (V 
 W 
 V )(q,−p)

where V = W(V̂ ) satisfies the star-unitarity condition (47). More generally, for any Â ∈ TC

and corresponding A ∈ KC ,

W(ÛÂÛ
†
) = W(ĈV̂ ÂV̂

†
Ĉ) = P(V 
 A 
 V ) = P(V ) 
 P(A) 
 P(V ). (57)

Let O(TR) denote the group of all real unitary transformations of TR onto itself, and let O(KR)

denote the group of real unitary transformations of KR onto itself. Then

Aut(P) ∼= Aut(V) O(TR) ∼= O(KR)

Aut(P) < O(TR) Aut(V) < O(KR).
(58)
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In particular, it is important to note that in general Aut(P) and Aut(V) are proper subgroups
of O(TR) and O(KR), respectively. It is easy to see that Aut(P) can be characterized as the
subgroup of O(TR) whose elements satisfy

µ(ÂB̂) = µ(Â)µ(B̂) ∀Â, B̂ ∈ TR. (59)

For if µ ∈ Aut(P), then (59) is satisfied as a consequence of (44), and conversely, if µ ∈ O(TR)

satisfies (59), then it is a bijective map from P to P which satisfies (40), and so belongs to
Aut(P). Likewise Aut(V) can be characterized as the subgroup of O(KR) whose elements
satisfy

M(A 
 B) = M(A) 
 M(B). (60)

Given an element µ ∈ Aut(P) (or equivalently, given an element M ∈ Aut(V)), it is
possible in principle to construct the corresponding unitary or antiunitary operator Û of (44),
up to a phase, and proofs of Wigner’s theorem show how it can be done [46–48]. However,
there seems to be no simple recipe for such a construction in general. Fortunately, in many
applications to physics, we have to deal with connected Lie groups of automorphisms, possibly
extended by discrete transformations, and the problem of identifying the generator of a one-
parameter group of unitaries corresponding to the generator of a given one-parameter group
of automorphisms is more straightforward. This is exploited in what follows.

5. Symmetries and the Weyl–Wigner product

Given a group G and a quantum system having H as its space of state vectors, we say that
G is a pre-symmetry group of the system, if there exists a homomorphism µ from G onto a
subgroup Ḡ < Aut(P). The group of symmetries of the Hamiltonian of the system serves
as one example, and any dynamical symmetry (or spectrum-generating) group as another, but
Aut(P) is large, with many subgroups. Wigner’s theorem [46–48] shows that Aut(P), and
hence every pre-symmetry group G, has a ray representation �H by unitary and antiunitary
operators on H,

�H(g)ϕ = Û(g)ϕ Û(g1)Û(g2) = eiω(g1,g2)Û (g1g2) (61)

where ω is a real-valued function satisfying appropriate associativity conditions [46, 47].
Of more direct interest to us here is that G has a real unitary representation �TR

on TR ,
and an isomorphic real unitary representation �KR

on KR . The representation �TR
is defined

by the action (44) of each element µ(g) = �TR
(g) of Ḡ < Aut(P) on an arbitrary element

Â ∈ TR :

g : Â −→ �TR
(g)(Â) = Û(g)ÂÛ(g)†. (62)

The transformation �TR
(g) is real and unitary, even in the case that Û(g) is antiunitary, as

noted earlier. The group representation property is immediate from (62):

�TR
(g1)�TR

(g2)(Â) = Û(g1)Û(g2)ÂÛ(g2)
†Û (g1)

†

= eiω(g1,g2)Û (g1g2)ÂÛ(g1g2)
† e−iω(g1,g2)

= �TR
(g1g2)(Â). (63)

The unitary representation �KR
is defined as the Weyl–Wigner transform of the unitary

representation �TR
, to which it is therefore isomorphic:

�KR
(g)(A) = W

(
�TR

(g)(Â)
)

for all Â ∈ TR

that is �KR
W = W�TR

on TR.
(64)
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The group action of �KR
follows from that of �TR

in (63), but is worth considering in
more detail. In the case that Û(g) is unitary, the action of �KR

corresponding to (62) is

g : A −→ �KR
(g)(A) = U(g) 
 A 
 U(g) (65)

where U(g) = W(Û(g)) is star-unitary.
If every element Û (g) of �H is unitary then, just as

Û(g1)Û(g2) = eiω(g1,g2)Û (g1g2) (66)

in (61), so the functions U(g) satisfy

U(g1) 
 U(g2) = eiω(g1,g2)U(g1g2) (67)

and provide a unitary ray representation under the star product, isomorphic to �H. Such

-representations have been discussed in the literature [31–34, 37, 27].

In the case that Û(g) = ĈV̂ (g) is antiunitary, with V̂ (g) unitary and Ĉ the antiunitary
operator in (50), the action of �KR

(g) is, corresponding to (62),

g : A −→ �KR
(g)(A) = P(V (g) 
 A 
 V (g)) = P(V (g)) 
 P(A) 
 P(V (g)) (68)

where V (g) = W(V̂ (g)) is star-unitary. The group representation property for �KR
, which

is of course also guaranteed by the isomorphism between �TR
and �KR

, can be regarded as a
consequence of the star-unitarity of Û(g) and V̂ (g), and the properties (52) ofP . For example,
if Û(g2) is unitary, but Û(g1) = ĈV̂ (g1) and Û(g1g2) = ĈV̂ (g1g2) are antiunitary, then

�KR
(g1)�KR

(g2)(A) (69)

= P(V (g1)) 
 P(U(g2)) 
 P(A) 
 P(U(g2)) 
 P(V (g1))

= P(U(g2) 
 V (g1)) 
 P(A) 
 P(V (g1) 
 U(g2))

= P((V (g1) 
 U(g2)) 
 P(A) 
 P(V (g1) 
 U(g2))

= P(V (g1g2)) 
 P(A) 
 P(V (g1g2))

= P(V (g1g2) 
 A 
 V (g1g2))

= �KR
(g1g2)(A). (70)

The representation �TR
on TR , and hence the representation �KR

on KR , is isomorphic to the
tensor product of the Hilbert space representation �H with its contragredient [37]:

�TR
∼= �KR

∼= �H ⊗ �C
H. (71)

To see this, we realize H ⊗ H as L2(C, dx) ⊗ L2(C, dy), then �H on L2(C, dx), and �C
H

on L2(C, dy). Consider first the case that every element of �H is unitary. Let N denote the
unitary mapping from TR to L2(C, dx) ⊗ L2(C, dy) defined by

N (Â) = AK (72)

where AK(x, y) is the kernel of Â, regarded as an integral operator, as in (11). Then

N
(
�TR

(g)(Â)
) =

∫
UK(g|x, x ′)AK(x ′, y ′)UK(g|y ′, y) dx ′ dy ′ (73)

corresponding to (62). In (73), the kernel of Û(g) is UK(g|x ′, y ′), which is not itself square-
integrable. Because the action of �H(g) in L2(C, dx) is defined by

(�H(g)ϕ)(x) =
∫

UK(g|x, x ′)ϕ(x ′) dx ′ (74)

and the action of �C
H(g) in L2(C, dy) is defined by(

�C
H(g)ϕ

)
(y) =

∫
UK(g|y ′, y)ϕ(y ′) dy ′ (75)
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then (73) expresses the isomorphism between �TR
and �H ⊗ �C

H:

N
(
�TR

(g)(Â)
) = (

�L2(C,dx)(g) ⊗ �C
L2(C,dy)(g)

)
(N (Â)) or

N�TR
= (

�L2(C,dx)(g) ⊗ �C
L2(C,dy)

)
N on TR.

(76)

The same is true in the case that Û(g) = ĈV̂ (g) is antiunitary, with V̂ (g) unitary. Then

N
(
�TR

(g)(Â)
) =

∫
VK(g|x, x ′)AK(x ′, y ′)VK(g|y ′, y) dx ′ dy ′ (77)

and because

(�H(g)ϕ)(x) =
∫

VK(g|x, x ′)ϕ(x ′) dx ′ (78)

and (
�C

H(g)ϕ
)
(y) =

∫
VK(g|y ′, y)ϕ(y ′) dy ′ (79)

then (76) again holds.
Now let Z denote the unitary mapping from L2(C, dx) ⊗ L2(C, dy) to KR defined by

Z = WN †. (80)

It is not hard to see from (72) and (12) that

(Zf )(q, p) =
∫

f (q − x/2, q + x/2) eipx dx (81)

with inverse acting as

(Z†F)(x, y) = 1

2π

∫
F((x + y)/2, p) eip(x−y) dp. (82)

From (64) and (72), we have the isomorphism between �KR
and �H ⊗ �C

H in the form

�KR
Z = Z

(
�L2(C,dx) ⊗ �C

L2(C,dy)

)
. (83)

We say that �KR
is the Weyl–Wigner product of �H and �C

H, denoted by

�H
W⊗ �C

H. (84)

The reduction to irreducibles of the Weyl–Wigner product will evidently lead to the same
Clebsch–Gordan series as the reduction of the usual tensor product �H ⊗ �C

H, and the basis
vectors on which the reduction is accomplished will be related by the intertwiner Z. We shall
consider this further only in the context of example 4 (case A) in the next section, where the
reductions can easily be worked out and compared.

6. Factorizing phase-space representations

Not every real, unitary representation �KR
of a group on the function spaceKR is in the form of

a Weyl–Wigner product. Only those representations forming subgroups of Aut(V) < O(KR)

have this form. In view of (60), the extra condition to be satisfied is

�KR
(g)(A 
 B) = �KR

(g)(A) 
 �KR
(g)(B) (85)

for all A,B ∈ KR and all g in the group. Given a representation�KR
which is in Aut(V), and so

does satisfy (85), it follows from Wigner’s theorem that it must be possible to factorize �KR
as

the Weyl–Wigner product of a representation �H on Hilbert space with its contragredient �C
H,
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and that this representation �H will be in general a unitary or antiunitary ray representation
of the underlying group.

We now examine how this factorization process can be put into effect, and begin by
specializing to the case of a connected Lie group G with a unitary ray representation �H on
H, a corresponding real unitary representation �TR

on TR , and a corresponding real unitary
representation �KR

on KR , with the isomorphisms (71).
Let Â denote the self-adjoint linear operator acting on H which generates the one-

parameter sub-representation of �H corresponding to a 1-parameter subgroup H < G. Let
α denote the self-adjoint linear operator acting on KR which generates the corresponding
1-parameter sub-representation of �KR

. If we are given �H, it is clear from (65) and (68)
that we can determine �KR

, and so, given Â, we can determine α in principle. We call
this the ‘direct problem’. More interesting, and less obvious, is that given �KR

and hence,
implicitly, given α, we can solve the ‘inverse problem’ and determine Â. In this way we
attempt to determine, one 1-parameter subgroup at a time, the ray representation �H from the
real unitary representation �KR

, in effect performing the factorization (71):

�KR
= �H

W⊗ �C
H. (86)

We consider two cases. In the first case, (Â−aÎ ) ∈ TR for some real constant a; in the second
case, Â ∈ QWH .

Suppose first that we are given (Â−aÎ) ∈ TR for some real a, and hence a corresponding
function A such that (A − a) = W(Â − aÎ) ∈ KR. Let Ã = A − a. We look for α in the
form of an integral operator [44] on KR:

(αB)(q1, p1) =
∫

αK(q1, p1, q2, p2)B(q2, p2) d�2. (87)

The local (Lie algebraic) condition corresponding to the global (group-theoretic) condition
(65) is

αB = A 
 B − B 
 A = Ã 
 B − B 
 Ã = i{Ã, B}GM (88)

from which it is easily checked that, as a consequence of (88),

α(B 
 C) = (αB) 
 C + B 
 (αC). (89)

This is the local condition corresponding to (85). When (88) holds, we have from (21), for
suitably smooth B, say B ∈ JR ,∫

αK(q1, p1, q2, p2)B(q2, p2) d�2 = 2i

π2

∫
[sin{2[p1(q2 − q3) + p2(q3 − q1)

+ p3(q1 − q2)]}Ã(q3, p3) d�3]B(q2, p2) d�2 (90)

and so

αK(q1, p1, q2, p2) = 2i

π2

∫
sin{2[p1(q2 − q3) + p2(q3 − q1) + p3(q1 − q2)]}Ã(q3, p3) d�3.

(91)

Then (87) and (91) define the action of α in terms of Ã (and hence in terms of A or Â), thus
solving the direct problem. Note that because Ã is real, (91) implies

αK(q1, p1, q2, p2) = αK(q2, p2, q1, p1) = −αK(q1, p1, q2, p2) (92)

as required by selfadjointness of α, and the reality of �KR
.

To solve the inverse problem, we must invert (91). This will only be possible if αK is
further constrained, because the conditions (92) only guarantee that α generates an element
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of O(KR), and we require that α generates an element of Aut(V) < O(KR). The further
constraint is (89), but we wish to express it as a condition on α alone. We change variables in
(91) and write it in the form

αK((u′ − u)/2, (v′ + v)/2, (u′ + u)/2, (v′ − v)/2)

= − 2i

π2

∫
sin{2v(q3 − u′/2) + 2u(p3 − v′/2)}Ã(q3, p3) d�3

= − 2i

π2

∫
sin{2vq3 + 2up3}Ã(q3 + u′/2, p3 + v′/2) d�3

= − i

2π2

∫
sin{vx + uy}Ã((u′ + x)/2, (v′ + y)/2) dx dy (93)

where

u = q2 − q1 v = p1 − p2 u′ = q2 + q1 v′ = p1 + p2. (94)

Now (93) takes the form

R(u, v, u′, v′) =
∫

sin(vx + uy)S(x, y, u′, v′) dx dy (95)

where
R(u, v, u′, v′) = αK((u′ − u)/2, (v′ + v)/2, (u′ + u)/2, (v′ − v)/2)

S(x, y, u′, v′) = − i

2π2
Ã((u′ + x)/2, (v′ + y)/2).

(96)

Set

S(±)(x, y, u′, v′) = 1
2 (S(x, y, u′, v′) ± S(−x,−y, u′, v′)) (97)

and note that (95) can be written as

R(u, v, u′, v′) =
∫

sin(vx + uy)S(−)(x, y, u′, v′) dx dy

= −i
∫

ei(vx+uy)S(−)(x, y, u′, v′) dx dy. (98)

Inverting the double Fourier transform, we have

S(−)(x, y, u′, v′) = i

(2π)2

∫
e−i(vx+uy)R(u, v, u′, v′) du dv

= 1

(2π)2

∫
sin(vx + uy)R(u, v, u′, v′) du dv (99)

using R(−u,−v, u′, v′) = −R(u, v, u′, v′), which follows from (92). Reintroducing A from
(96) and (97), we have

A((u′ + x)/2, (v′ + y)/2) − A((u′ − x)/2, (v′ − y)/2)

= 2i
∫

sin(vx + uy)R(u, v, u′, v′) du dv (100)

and so

A(x, y) − A(0, 0) = 2i
∫

sin(vx + uy)R(u, v, x, y) du dv. (101)

Then

A((u′ + x)/2, (v′ + y)/2) − A(0, 0) = 2i
∫

sin(v(u′ + x)/2

+ u(v′ + y)/2)R(u, v, (u′ + x)/2, (v′ + y)/2) du dv (102)
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with a similar expression for A((u′ − x)/2, (v′ − y)/2) − A(0, 0). Subtracting this second
expression from the first, and equating to the RHS of (100), we get∫

sin(vx + uy)R(u, v, u′, v′) du dv

=
∫

sin(v(u′ + x)/2 + u(v′ + y)/2)R(u, v, (u′ + x)/2, (v′ + y)/2) du dv

−
∫

sin(v(u′ − x)/2 + u(v′ − y)/2)R(u, v, (u′ − x)/2, (v′ − y)/2) du dv.

(103)

It is this condition, with R as in (96), that αK must satisfy in addition to (92), if α is to generate
an element of Aut(V) < O(KR). To see this, and to solve the inverse problem, suppose now
that we are given αK satsifying (92) and (103), with R as in (96), and u, v, u′, v′ as in (94).

Set

A(x, y) = a + 2i
∫

sin(vx + uy)R(u, v, x, y) du dv (104)

where a is an arbitrary real constant, and check that A is real, and that (100) is satisfied. Then
retrace the steps to recover (91), showing that A as given by (104) generates the automorphism
associated with α. Note that A is only defined by α up to the arbitrary real constant a, so the
corresponding unitary operator in �H is only defined up to a constant phase, as expected.

The treatment of this first case, with Â ∈ TR and A ∈ KR , might be extended to the case
of a general selfadjoint Â and corresponding α, with a suitable extension of the interpretation
of the integral formulae above to accommodate distributions. We only consider further the
second case mentioned above, when Â ∈ QWH . This can be treated more directly.

Suppose then that Â is a Hermitian polynomial in the canonical operators q̂, p̂ and Î , as
introduced in section 2. The corresponding A is a real polynomial in q, p and 1 of the same
degree, and according to (88) and (26), α is a polynomial in q, p, ∂/∂q and ∂/∂p acting on
suitably smooth B ∈ KR (say B ∈ JR). This last polynomial is also of the same degree,
except that it has no constant term. For example, corresponding to A = q + a, we have

αB = i{q + a,B}GM = i
∂B

∂p
(105)

using (24), so that A = q + a corresponds to α = i∂/∂p for all values of the constant a.
When restricted to act on an invariant subspace of H, the selfadjoint operators in QWH ,

X̂1 = Î , X̂2 = q̂, X̂3 = p̂, X̂4 = q̂2, X̂5 = 1
2 (q̂p̂ + p̂q̂), . . . (106)

span an infinite-dimensional real Lie algebra L. Choosing the coordinate representation
H∼= L2(C, dx) as in section 2, we have the representation ξ of L on G < H with

ξ(X̂1) = 1, ξ(X̂2) = x, ξ(X̂3) = −i
∂

∂x
, ξ(X̂4) = x2, ξ(X̂5) = −i

(
x

∂

∂x
+

1

2

)
, . . . .

(107)

The mapping �, carrying selfadjoint operators Â in QWH into corresponding selfadjoint
operators α acting on KR , defines a representation of L on JR . This can be seen explicitly
from (88), which gives for any B ∈ JR ,

�(X̂i)�(X̂j )B = −{W(X̂i), {W(X̂j ), B}GM}GM (108)

so that

[�(X̂i),�(X̂j )]B = {{W(X̂i),W(X̂j )}GM,B}GM

= {W([X̂i , X̂j ]), B}GM

= �([X̂i , X̂j ])B (109)
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Table 1. Corrresponding Â, A and α. Subscripts on P indicate partial derivatives, and V (n) denotes
the nth derivative of V .

Â A α

W−1(P (q,p)) P (q, p)

i
(
Pq

∂
∂p

− Pp
∂
∂q

)
− i

3!4

(
Pqqq

∂3

∂p3 − 3Pqqp
∂3

∂q∂p2 + 3Pqpp
∂3

∂q2∂p
−

Pppp
∂3

∂q3

)
+ i

5!42

(
Pqqqqq

∂5

∂p5 − . . .

Î 1 0
q̂ q i ∂

∂p

p̂ p −i ∂
∂q

q̂2 q2 2iq ∂
∂p

p̂2 p2 −2ip ∂
∂q

1
2 (q̂p̂ + p̂q̂) qp ip ∂

∂p
− iq ∂

∂q

q̂3 q3 3iq2 ∂
∂p

− 1
4 i ∂3

∂p3

p̂3 p3 −3ip2 ∂
∂q

+ 1
4 i ∂3

∂q3

q̂p̂q̂ q2p 2iqp ∂
∂p

− iq2 ∂
∂q

+ 1
8 i ∂3

∂q∂p2

p̂q̂p̂ qp2 ip2 ∂
∂p

− 2iqp ∂
∂q

− 1
8 i ∂3

∂q2∂p

V (q̂) V (q) iV (1)(q) ∂
∂p

− i
3!4 V (3)(q) ∂3

∂p3 +

i
5!42 V (5)(q) ∂5

∂p5 − · · ·

using the antisymmetry property of the Groenewold–Moyal bracket, and the associated Jacobi
identity. Thus, when all the generators of the representation �KR

of the group G belong
to QWH , they provide a representation on JR of the Lie algebra of G. Using (88), we find
explicitly that

�(X̂1) = 0, �(X̂2) = i
∂

∂p
, �(X̂3) = −i

∂

∂q
, �(X̂4) = 2iq

∂

∂p
, . . . . (110)

In table 1 we list some corresponding Â, A = W(Â) and α = �(Â) obtained using (88).
Note that every α is formally Hermitian and pure imaginary, as required by the unitarity and
reality of �. The extension of the operators Â and α from Hermitian polynomials on G and JR

respectively, to selfadjoint operators on appropriate domains in H and KR is straightforward.
Note that � defines a Lie algebra homomorphism but not an algebra homomorphism:

it does not define a representation of the enveloping algebra of the Heisenberg–Weyl Lie
algebra. For example, as can be seen from the table, �(X̂2)�(X̂3) + �(X̂3)�(X̂2) �=
�(X̂2X̂3 + X̂3X̂2).

Corresponding to (111), the representation � of L is isomorphic to the tensor product of
the representation ξ on L2(C, dx) as in (107) and its contragredient ξC on L2(C, dy), so that
on JR ,

� = Z(ξ ⊗ ξc)Z† (111)

where Z is the unitary transformation (81), and

ξC(X̂1) = −1, ξC(X̂2) = −y, ξC(X̂3) = −i
∂

∂y
,

ξC(X̂4) = −y2, ξC(X̂5) = −i

(
y

∂

∂y
+

1

2

)
, . . . .

(112)
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The rule in going from (107) to (112) is that each real expression attracts a minus sign, whereas
each pure imaginary expression does not. Straightforward calculation shows that

ZxZ† = q +
1

2
i

∂

∂p
ZyZ† = q − 1

2
i

∂

∂p

Zi
∂

∂x
Z† = −p +

1

2
i

∂

∂q
Zi

∂

∂y
Z† = p +

1

2
i

∂

∂q

(113)

with inverses

Z†qZ = 1

2
(x + y) Z†i

∂

∂p
Z = x − y

Z†pZ = 1

2

(
−i

∂

∂x
+ i

∂

∂y

)
Z†i

∂

∂q
Z = i

∂

∂x
+ i

∂

∂y

(114)

from which one can easily deduce that, corresponding to the monomial A = qmpn and its
image Â under W−1 as in (23), we have

�(W−1(qmpn)) = 1

2m

m∑
r=0

Cm
r

[(
q +

1

2
i

∂

∂p

)m−r (
p − 1

2
i

∂

∂q

)n (
q +

1

2
i

∂

∂p

)r

−
(

q − 1

2
i

∂

∂p

)m−r (
p +

1

2
i

∂

∂q

)n (
q − 1

2
i

∂

∂p

)r
]

. (115)

Related formulae have been presented recently by Hakioglu and Dragt [45].
The extra constraint corresponding to (103), which α must satisfy in order to generate

an element of Aut(V), is simply this: only those polynomials in q, p, ∂/∂q and ∂/∂p

which are real linear combinations of those in (115), represent possible α. For example,
α = iq2∂/∂p is not allowed; it generates an element of O(KR) that is not in Aut(V). A
more straightforward test of a candidate α is to evaluate (Z†αZ) using (114). The resulting

operator on L2(C, dx) ⊗ L2(C, dy) must have the form Â(x,−i∂/∂x) − Â(y,−i∂/∂y) for
some Hermitian polynomial operator Â(x,−i∂/∂x) on L2(C, dx).

The direct and inverse problems in this case are solved simply by consulting table 1,
extended if necessary to higher degrees using (88) or (115). That is to say, given Â (or A),
read off α; given α, read off Â (or A) up to the addition of an arbitrary real constant multiple
of Î (or 1). Alternatively, to solve the inverse problem, proceed as in the preceding paragraph
to identify Â (to within a constant multiple of the identity operator).

7. Examples

It is informative in the first two examples to use dimensional variables, introducing factors of
h̄ in the appropriate places.

7.1. The Heisenberg–Weyl group

Elements of this two-parameter, real, Abelian Lie group are labelled g(a1, a2), where a1 and
a2 take all real values, and the product rule is

g(a1, a2)g(b1, b2) = g(a1 + b1, a2 + b2). (116)

The real, true, unitary representation on KR in this case has the form(
�KR

(a1, a2)F
)
(q, p) = F(q + a1, p − a2) (117)
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with the associated generators

α1 = −i
∂

∂q
α2 = i

∂

∂p
(118)

satisfying on JR the commutation relation

[α1, α2] = 0. (119)

Note that Planck’s constant does not appear in �KR
.

Turning to the ‘factorization’ (86), we have from (117) and (82) that(
Z†�KR

(a1, a2)F
)
(x, y) = 1

2πh̄

∫
F

(x + y

2
+ a1, p − a2

)
eip(x−y)/h̄ dp

= 1

2πh̄
eia2(x−y)/h̄

∫
F

(x + y

2
+ a1, p

)
eip(x−y)/h̄ dp. (120)

Setting

(Z†F)(x, y) = f (x, y) (121)

so that, from (82),

f (x, y) = 1

2πh̄

∫
F

(x + y

2
, p

)
eip(x−y)/h̄ dp (122)

we have from (120) that((
�L2(C,dx) ⊗ �C

L2(C,dy)

)
f

)
(x, y) = eia2(x−y)/h̄f (x + a1, y + a1). (123)

From this we see that a possible factorization is obtained by taking the action of �L2(C,dx) and
�C

L2(C,dy) on u ∈ L2(C, dx) and v ∈ L2(C, dy), respectively, to be(
�L2(C,dx)(a1, a2)u

)
(x) = eiω(a1,a2) eia2x/h̄u(x + a1)(

�C
L2(C,dy)(a1, a2)v

)
(y) = e−iω(a1,a2) e−ia2y/h̄v(y + a1)

(124)

where ω is real-valued. It is then readily checked that �L2(C,dx) is a projective representation
of the Abelian group (116), whatever the form of ω. Different choices for ω correspond to
different choices, from the same cohomology class, of the cocycle associated with projective
representations of the group, and do not differ in a significant way. We may say that, up to the
phase ω, we have recovered in (124) the usual projective unitary representation on H, realized
as L2(C, dx).

We can also consider this example from the Lie algebraic viewpoint. Using (114), now
with appropriate factors of h̄ inserted, we have at once from (118) that

Z†α1Z = −i
∂

∂x
− i

∂

∂y
Z†α2Z = x

h̄
− y

h̄
(125)

from which we have

Â1 = p̂ = −ih̄
∂

∂x
+ p0 Â2 = q̂ = x + q0 (126)

where q0 and p0 are arbitrary constants. Then

[q̂, p̂] = ih̄ (127)

on G, and Â1, Â2 are equivalent to the usual canonical operators there. Note that h̄ appears
on the RHS of (127) as the parameter associated with a central extension of the Lie algebra in
going from (119) to (127). There is no h̄ in �KR

, but there is in �H. Evidently its appearance
comes from the unitary transformation Z, or equivalently, from the Weyl–Wigner transform.
Note also that from this point of view, h̄ is an arbitrary parameter; the factorization (86) of
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�KR
works for any value of h̄ in Z in this case, and the one to be chosen ultimately is a matter

for physics to decide.
The Heisenberg–Weyl algebra can be generalized in an obvious way, showing that Lie

algebras with polynomial elements of arbitrarily high degree can arise in the phase-space
formalism. Consider the (N + 1)-dimensional real Lie algebra with selfadjoint representation
generated by

α1 = −i
∂

∂q
(128)

together with

β1 = i
∂

∂p
, β2 = iq

∂

∂p
, β3 = 1

2
iq2 ∂

∂p
− 1

24
i

∂3

∂p3
, . . . , βN that is

βn = 2

n!

n∑
m=1

( i

2

)n−m

Cn
mqm ∂n−m

∂pn−m
n = 1, 2, . . . , N (129)

where Cn
m is the binomial coefficient as in (22), and the sum is restricted to odd values of

n − m. In generalization of (126), we find that the corresponding operators on H are

Â1 = −ih̄
∂

∂x
B̂n = xn

n!
n = 1, 2, . . . , N (130)

up to the addition of arbitrary real constants. Once again, the Lie algebra generated by Â1

and the B̂n is a central extension of the Lie algebra generated by α1 and the βn, and Planck’s
constant appears as the extension parameter.

7.2. The Galilei group

For a system with one degree of freedom, this group is a three-parameter real Lie group [55]
with elements g(a1, a2, a3), where a1, a2 and a3 take all real values, and the product rule is

g(a1, a2, a3)g(b1, b2, b3) = g(a1 + b1, a2 + b2, a3 + b3 + b2a1). (131)

Consider the true, real, unitary representation on KR defined by(
�KR

(a1, a2, a3)F
)
(q, p) = F

(
q − a1

m
p − a2a1 − a3, p + ma2

)
(132)

with associated generators

α1 = −i
p

m

∂

∂q
α2 = im

∂

∂p
α3 = −i

∂

∂q
(133)

satisfying the commutation relations

[α1, α2] = −iα3 [α2, α3] = 0 [α1, α3] = 0. (134)

Note in this case that m appears as a parameter in the action (132) of the group representation,
though not in the commutation relations (134).

It is easiest to perform a factorization in this case after realizingH and its dual as L2(C, dr)

and L2(C, ds), respectively, where r and s are ‘momentum’ variables. In place of (81) and
(82), we have

F(q, p) =
∫

f̃
(
p − r

2
, p +

r

2

)
e−irq/h̄ dr = (Z̃f̃ )(q, p)

f̃ (r, s) = 1

2π

∫
F

(
q,

r + s

2

)
e−iq(r−s)/h̄ dq = (Z̃

†
F)(r, s).

(135)
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Considering (132), we then have(
Z̃

†
�KR

F
)

(r, s) = 1

2π

∫
F

(
q − a1

m

r + s

2
− a2a1 − a3,

r + s

2
+ ma2

)
e−iq(r−s)/h̄ dq

(136)

so that((
�L2(C,dr) ⊗ �C

L2(C,ds)

)
f̃

)
(r, s) =

(
Z̃

†
�KR

F
)

(r, s)

= 1

2π

∫
f̃

(
r + s

2
+ ma2 − r ′

2
,
r + s

2
+ ma2 +

r ′

2

)

e−ir ′(q+ −a1
m

r+s
2 −a2a1−a3)/h̄ e−iq(r−s)/h̄ dq dr ′,

= f̃ (r + ma2, s + ma2) e−i a1
m

(r2−s2) e−i(a2a1+a3)(r−s). (137)

We see that a possible factorization has(
�L2(C,dr)(a1, a2, a3)u

)
(r) = eiω(a1,a2,a3) e−i a1

m
r2

e−i(a2a1+a3)ru(r + ma2)(
�L2(C,ds)C (a1, a2, a3)v

)
(s) = e−iω(a1,a2,a3) ei a1

m
s2

ei(a2a1+a3)sv(s + ma2)
(138)

which, up to the arbitrary phase ω, is the familiar action of the unitary ray representation of the
Galilei group in the momentum space realization of Hilbert space, and of its contragredient
representation.

From the Lie algebraic viewpoint, we find from (114)

Z†α1Z = − h̄

2m

∂2

∂x2
+

h̄

2m

∂2

∂y2
Z†α2Z = m

h̄
x − m

h̄
y

Z†α3Z = −i
∂

∂x
− i

∂

∂y

(139)

from which we deduce that, in the coordinate reopresentation now,

Â1 = Ĥ = − h̄2

2m

∂2

∂x2
+ e0 Â2 = K̂ = m(x + q0)

Â3 = p̂ = −ih̄
∂

∂x
+ p0

(140)

where e0, q0 and p0 are arbitrary constants. Then Ĥ , K̂ and p̂ are equivalent to the usual
Hamiltonian, boost and momentum operators for the free particle in one dimension, and satisfy
on G the familiar relations

[Ĥ , K̂] = −ih̄p̂ [Ĥ , p̂] = 0 [K̂, p̂] = h̄m. (141)

Comparing with (134), we see the appearance of m in (141), associated with a central extension
of the Lie algebra of the Galilei group. Although �KR

is a true representation of the group,
associated with the commutation relations (134) in which no m appears, nevertheless m is a
parameter in �KR

, enabling the factorization (138) to take place, and the m to appear in (141).

7.3. Two one-parameter groups

Consider the 1-parameter transformation group acting on � with generator α, whose kernel as
in (87) is given by

αK(q1, p1, q2, p2)

= i sin[(1 + ε)(p1q2 − p2q1) − (1 − ε)(q1p1 − q2p2)] e−(q1−q2)
2/τ−(p1−p2)

2/σ

⇒R(u, v, u′, v′) = i sin(uv′ + εu′v) e−u2/τ−v2/σ (142)
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where τ and σ are positive constants, and ε = ±1. Then the constraints (92) are satisfied, so
that the corresponding operator α generates an element of O(KR). Now we have

2i
∫

sin(vx + uy)R(u, v, u′, v′) du dv

= 2π
√

τσ
(
e−((y+v′)/2)2τ e−((x+εu′)/2)2σ − e−((y−v′)/2)2τ e−((x−εu′)/2)2σ

)
(143)

and (103) is seen to be satisfied if ε = 1, but not satisfied if ε = −1. If ε = 1, (104) gives

A(q, p) = a + 2π
√

στ e−σq2−τp2
(144)

with a arbitrary. If ε = −1, the element of O(KR) generated by α is not an element of Aut(V),
and no A exists.

7.4. The Lie algebra sp(2, R): case A

We consider the representation on KR with

α1 = i

2

(
p

∂

∂p
− q

∂

∂q

)
α2 = i

2

(
q

∂

∂p
+ p

∂

∂q

)

α3 = i

2

(
q

∂

∂p
− p

∂

∂q

) (145)

satisfying

[α1, α2] = −iα3 [α2, α3] = iα1 [α3, α1] = iα2. (146)

Performing the factorization as in the previous examples, we get in this case (up to the addition
of constant terms, which can be removed by redefinitions)

Â1 = − i

2

(
x

∂

∂x
+ 1

)
Â2 = 1

4

(
x2 +

∂2

∂x2

)

Â3 = 1

4

(
x2 − ∂2

∂x2

) (147)

satisfying relations corresponding to (146). This is the representation associated with the
simple harmonic oscillator. Each Âi is quadratic in the canonical operators on G, and the
quadratic Casimir operator for the Lie algebra has the value

−Â
2
1 − Â

2
2 + Â

2
3 = − 3

16 . (148)

No non-trivial central extensions are involved in this case, which has been described elsewhere
in the phase-space context, from a slightly different point of view [45].

It is interesting in this example to compare the reductions to irreducible components of
the Weyl–Wigner product �KR

, and the usual tensor product �H ⊗ �C
H, which can be found

explicitly in both representations. In �KR
we look for the common eigenfunctions of

�2 = −α2
1 − α2

2 + α2
3 +

1

4

= 1

4

(
p2 ∂2

∂p2
+ 3p

∂

∂p
+ q2 ∂2

∂q2
+ 3q

∂

∂q
+ 2pq

∂2

∂q∂p
+ 1

)

=
(

1

2

(
r

∂

∂r
+ 1

))2

(149)

and

α3 = i

2

(
q

∂

∂p
− p

∂

∂q

)
= 1

2
i

∂

∂θ
(150)
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where in (150) and the last line of (149) we have introduced polar variables in the phase plane

q = r cos(θ) p = r sin(θ) 0 � r � ∞ 0 � θ < 2π. (151)

The common (generalized, unnormalized) eigenfunctions of � and α3 are then seen to be

�λ,m(r, θ) = e−iλlnr

r
e−imθ −∞ < λ < ∞ m = 0,±1,±2, . . . . (152)

In fact, there are two irreducible representations here for each value of λ, one with all even
integer values of m, and one with all odd integer values.

In �H ⊗ �C
H, with Âi(x,−i∂/∂x) = Âi as in (147), we seek the common eigenfunctions

�λ′,m′(x, y) of

−(
Â1(x,−i∂/∂x) − Â1(y,−i∂/∂y)

)2 − (
Â2(x,−i∂/∂x) − Â2(y,−i∂/∂y)

)2

+
(
Â3(x,−i∂/∂x) − Â3(y,−i∂/∂y)

)2
+ 1

4

= − 1
4 [i(ab − a†b†)]2 = −�′2 say (153)

and

J3 = Â3(x) − Â3(y) = 1
2 (a†a − b†b) (154)

where we have introduced the boson operators

a = 1√
2

(
x +

∂

∂x

)
b = 1√

2

(
y +

∂

∂y

)

a† = 1√
2

(
x − ∂

∂x

)
b† = 1√

2

(
y − ∂

∂y

)
.

(155)

When m′ is nonnegative, these eigenfunctions have the (unnormalized) form

�λ′,m′ (x, y) = a†m′
Wλ′

2 , m′
2
(2a†b†)ϕ0(x, y) (156)

where ϕ0(x, y) = exp[−(x2 + y2)/2] is the ‘vacuum vector,’ annihilated by a and b, and Wµν

denotes a Whittaker function [50]. When m′ is negative, the prefactor a†m′
on the RHS must

be replaced by b†−m′
. Again there are two irreducible representations here for each value of

λ′, one with all even integer values of m′, and one with all odd integer values. The basis
functions �λ,m(q, p) and �λ,m(x, y) must, of course, be related as in (81) and (82), but it is
by no means obvious that this is so.

7.5. The Lie algebra sp(2, R): case B

As another example where generators of higher degree than quadratic in the underlying
variables occur, we consider the selfadjoint representation of sp(2, R) on KR with

α1 = 1

2
i

∂

∂p
− 1

2
ip2 ∂

∂p
+ i

(
qp − 1

2
a

)
∂

∂q
+

1

8
i

∂3

∂q2∂p

α2 = −i

(
q

∂

∂q
− p

∂

∂p

)

α3 = −1

2
i

∂

∂p
− 1

2
ip2 ∂

∂p
+ i

(
qp − 1

2
a

)
∂

∂q
+

1

8
i

∂3

∂q2∂p

(157)

again satisfying (146), with a an arbitrary real parameter. Performing the factorization, we
get in this case (again after redefinitions, where necessary)

Â1 = 1

2

(
x + x

∂2

∂x2
+ (1 − ia)

∂

∂x

)
Â2 = −i

(
x

∂

∂x
+

1

2
(1 − ia)

)

Â3 = −1

2

(
x − x

∂2

∂x2
− (1 − ia)

∂

∂x

) (158)
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satisfying relations corresponding to (146). The quadratic Casimir in this case has the value

−Â
2
1 − Â

2
2 + Â

2
3 = − 1

4 (a2 + 1) (159)

showing that, whatever the real value of a, this selfadjoint representation on H is inequivalent
to the one associated with (147) and (148). Again, no non-trivial central extensions are
involved in this case.

7.6. Time reversal

The group has two elements g and e (identity) with g2 = e. The real, true, unitary
representation �KR

acts as(
�KR

(g)F
)
(q, p) = F(q,−p)

(
�KR

(e)F
)
(q, p) = F(q, p) (160)

for every F ∈ KR . We have from (82),(
Z†�KR

(g)F
)
(x, y) = 1

2π

∫
F

(x + y

2
,−p

)
eip(x−y) dp

= 1

2π

∫
F

(x + y

2
, p

)
e−ip(x−y) dp (161)

because F is real. Defining f (x, y) = (Z†F)(x, y) as in (82), we have

f (x, y) = 1

2π

∫
F

(x + y

2
, p

)
e−ip(x−y) dp (162)

and so((
�L2(C,dx)(g) ⊗ �L2(C,dy)(g)C

)
f

)
(x, y) = (

Z†�KR
(g)F

)
(x, y) = f (x, y). (163)

Now it can be seen that a possible factorization has(
�L2(C,dx)(g)u

)
(x) = eiωu(x)

(
�C

L2(C,dy)(g)u
)
(x) = e−iωv(y) (164)

with ω any real number, so that

�H(g) = �C
H(g) = eiωĈ (165)

where Ĉ is the antiunitary operator of (50) and (55).
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[44] Garcia-Calderon G and Moshinsky M 1980 J. Phys. A: Math. Gen. 13 L185–188

Dirl R, Kasperkovitz P and Moshinsky M 1988 J. Phys. A: Math. Gen. 21 1835–46
Moshinsky M and Sharma A 2000 Ann. Phys., NY 282 138–53

[45] Hakioglu T 1999 J. Phys. A: Math. Gen. 32 4111–30
Hakioglu T and Dragt A 2002 J. Phys. A: Math. Gen. 34 6603–15

[46] Wigner E P 1959 Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (New York:
Academic)

[47] Bargmann V 1964 J. Math. Phys. 5 862–8



1056 A J Bracken et al

[48] Cassinelli G, de Vito E, Lahti P J and Levrero A 1997 Rev. Math. Phys. 9 921–41
[49] Leonhardt U 1997 Measuring the Quantum State of Light (Cambridge: Cambridge University Press)
[50] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (New York: Dover)
[51] Gel’fand I M, Shilov G E and Vilenkin N Y 1964–8 Generalised Functions vol 1–5 (New York: Academic)
[52] Roberts J E 1966 J. Math. Phys. 7 1097–104
[53] Antoine J-P 1969 J. Math. Phys. 10 53–69

Antoine J-P 1969 J. Math. Phys. 10 2276–90
[54] Bohm A and Gadella M 1989 Dirac Kets, Gamow Vectors, and Gel’fand Triplets: the Rigged Hilbert Space

Formulation of Quantum Mechanics (Lectures in Mathematical Physics at the University of Texas at Austin)
(Berlin: Springer)
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